Introduction à la régression non paramétrique

François Husson & Julie Josse

Laboratoire de mathématiques appliquées - AGROCAMPUS OUEST

4 janvier 2016

Introduction Lisseurs Modèles additifs Conclusio

Le problème et les données

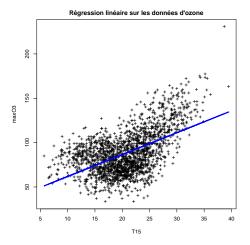
- Ozone phénomène complexe
- Enjeux de santé publique
- Mission Air Breizh: mesure, analyse, prévision → envoie tous les jours à 17 heures, l'indice de pollution du lendemain aux autorités
- Prev'Air:
 - modèle déterministe de simulation
 - national
- ⇒ Modèle statistique de prévision local (Rennes) pour prévoir les concentrations maximales d'ozone du lendemain
 - Seuil de recommandation
 - Seuil d'alerte (délai de mise en place des procédures)

Le problème et les données

Prévoir les pics d'ozone en fonction des prévisions météorologiques à Rennes (Air Breizh)

	maxO3	Т6	Т9	T12	T15	T18	Ne6	maxO3v
19940401	56	8.6	9.5	6.8	9.1	7.7	6	59.6
19940402	39.2	3.6	5.6	9.2	8.4	4.9	3	56
19940403	36	2.7	7.3	6.3	7	7.9	6	39.2
19940404	41.2	11.8	11.8	11	7	7.7	8	36
19940405	27.6	3.7	8.3	11.6	10.7	7.9	6	41.2
	• • • •							
20050929	73	11.2	16	17.8	18.6	15.1	2	68
20050930	46	14.2	17.3	17.2	17.5	18	8	73

La régression linéaire simple



$$Y_i = f(x_i) + \varepsilon_i$$
$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Approche paramétrique

- fonction de régression connue
- dépend d'un certain nombre de paramètres
- paramètres estimés à partir des données
- attractif car interprétation des paramètres et simplicité statistique

- ⇒ exemple le plus simple : la régression linéaire simple
- \Rightarrow ne reflète pas toujours la relation entre Y et x

Approche paramétrique : régression linéaire polynomiale

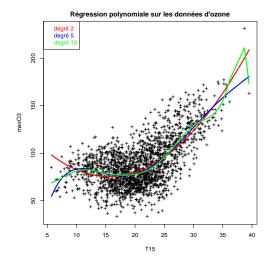
- \Rightarrow Visualisation graphique \rightarrow régression linéaire n'est pas adaptée
- ⇒ Autre forme se dégage?
- \Rightarrow Nouveau modèle \rightarrow choix laborieux

⇒ Régression polynomiale

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

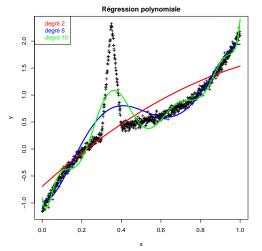
• Quel ordre de polynôme choisir?

Approche paramétrique : régression linéaire polynomiale



Introduction Lisseurs Modèles additifs Conclusio

Approche paramétrique : régression linéaire polynomiale



Fortes variations locales ⇒ Impossibilité de les modéliser avec un polynôme, même d'ordre élevé

Introduction Lisseurs Modèles additifs Conclusion

Approche paramétrique versus approche non paramétrique

Approche paramétrique :

$$Y = \beta_0 + \beta_1 x_i + \varepsilon_i$$

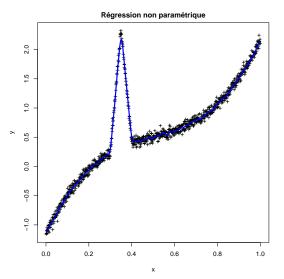
$$Y = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \varepsilon_i$$

Approche non paramétrique :

$$Y = \beta_0 + f(x_i) + \varepsilon_i$$

- Pas de structure de la fonction de régression
- La relation entre Y et x est ajustée à partir des données
 "Let the data show the appropriate functional form" (Hastie)
- Avantage : flexibilité, capte des variations inattendues

Approche non paramétrique



 \Rightarrow Passe « au plus près » des données : lisseur

Approche non paramétrique

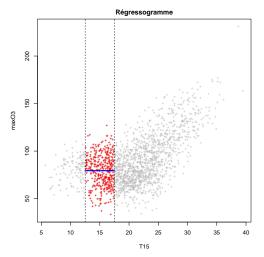
Définition d'un lisseur (Hastie) :

A smoother is a tool for summarizing the trend of a response measurement Y of one predictor X_1 . It produces an estimate of the trend that is less variable than Y itself; hence the name of smoother.

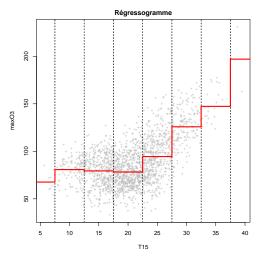
- Objectif descriptif
- Estimation de la fonction de régression
- \Rightarrow Moyenne : concept de base du lissage

Régressogramme (Bin smoother)

- Découper les x en intervalles réguliers
- Calculer la moyenne des Y dans chaque intervalle

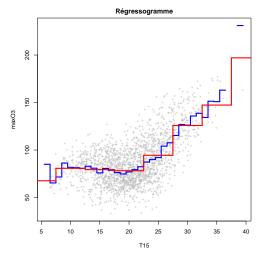


Régressogramme (Bin smoother)



- Choix de la fenêtre (dualité biais variance)
- Problème de discontinuité ⇒ Prendre des régions qui se chevauchent

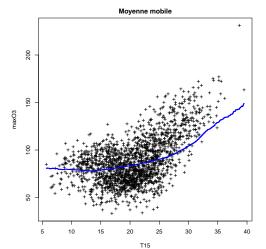
Régressogramme (Bin smoother)



Importance du choix de la fenêtre : dualité biais - variance

Moyenne mobile

- Principe : définir, en chaque point, un voisinage pour calculer la moyenne de Y (moyenne sur des intervalles glissants)
- Avantage : simple et intuitif



Moyenne mobile

Problèmes:

- Taille du voisinage
 - ⇒ paramètre de lissage (dualité biais variance)
 - ⇒ non paramétrique ne signifie pas absence de paramètres!

 Poids identiques à tous les points du voisinage et nuls aux autres ⇒ Prendre des poids "continus"

Moyenne mobile pondérée : Nadaraya-Watson

Moyenne mobile calculée par :

$$\frac{\sum_i p(x_i) Y_i}{\sum_i p(x_i)}$$

avec les poids

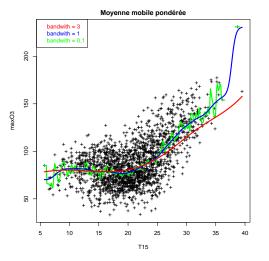
$$p(x_i) = K\left(\frac{x_i - x_0}{\lambda}\right)$$

Fonction des poids décroissante en $|x - x_0|$ et symétrique

- λ : largeur de la fenêtre
- λ élevé \Rightarrow les x_i ont le même poids \Rightarrow approximation est lisse
- Exemple du noyau gaussien

$$p(x_i) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{(x_i - x_0)^2}{2}\right)$$

Moyenne mobile pondérée : Nadaraya-Watson



- > library(KernSmooth)
- > plot(max03~T15,data=ozone,main="Moyenne mobile pondérée",pch="+")
- > fx=locpoly(ozone\$T15,ozone\$max03,degree=0,bandwidth=0.1)
- > lines(fx\$x,fx\$y, col="green",lwd=2)

ntroduction Lisseurs Modèles additifs Conclusion

Régression polynomiale locale pondérée (loess)

Pourquoi se contenter de la moyenne?

On en veut toujours plus : régression polynomiale locale pondérée

- méthode loess
- souvent on se contente de polynôme de degré 2
- choix d'un voisinage autour de x_0 ou plus proches voisins
- span : proportion de points constituant le voisinage

Régression polynomiale locale pondérée (loess)



- > plot(max03~T15,data=ozone,main="Moyenne mobile pondérée vs polynôme local pondéré",pch="+")
- > fx=locpoly(ozone\\$T15,ozone\\$maxO3,degree=0,bandwidth=3)
- > lines(fx\\$x,fx\\$y, col="red",lwd=2)
- > fx=loess(ozone\\$max03[order(ozone\\$T15)] ~ ozone\\$T15[order(ozone\\$T15)], span = 0.5, degree = 2)
- > lines(ozone\\$T15[order(ozone\$T15)],predict(fx), col="blue",lwd=2)

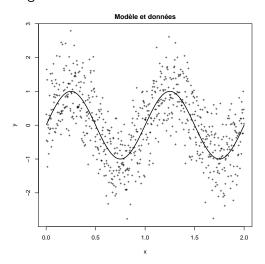
troduction Lisseurs Modèles additifs Conclusion

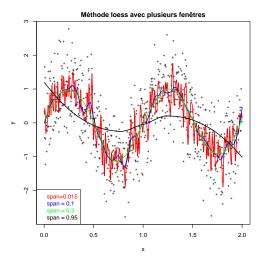
Régression polynomiale locale pondérée (loess)

Paramètre de la méthode :

- rayon du voisinage ou proportion (span) des points pris en compte dans le lissage
 - span proche de $0 \Rightarrow$ interpolation : biais faible, variance forte
 - span proche de 1 ⇒ régression constante : biais fort, variance faible
- ⇒ Arbitrage entre biais et variance

Le modèle pour générer les données et les données





```
> plot(y~x,cex=.7,pch="+",main="Méthode loess avec plusieurs fenêtres")
```

> pred <- loess(y ~ x, span = 0.015, degree = 2)

> points(pred\$fitted[order(x)]~x[order(x)],col="red",lwd=2,type="1")

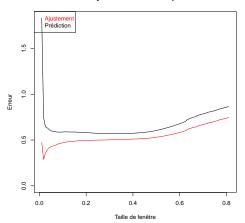
Estimation de la fenêtre optimale par apprentissage - validation :

- Séparer le jeu de données en proportion 2/3 pour apprentissage et 1/3 pour validation
- Faire varier la taille de la fenêtre
 - Estimer le modèle sur les données d'apprentissage
 - Calculer l'erreur sur les données de validation
- Choisir la fenêtre qui minimise les erreurs de prédiction

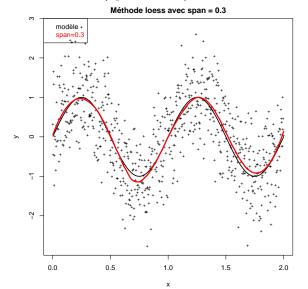
Si peu de données \Rightarrow validation croisée

Erreur d'ajustement - erreur de prévision

Erreur d'ajustement vs erreur de prédiction



Avec la meilleure fenêtre (span = 0.3)



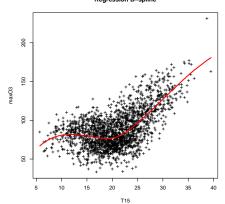
Splines

Autre type de lisseur : les splines Régression polynomiale par morceaux :

- nécessité de déterminer les nœuds (les points de jonction) : nombre et positions
- degré du polynôme (souvent polynôme cubique)

Splines

Régression B-spline



```
library(splines)
base=bs(ozone[order(ozone$T15),"T15"],knots=quantile(ozone[,"T15"],c(.25,.5,.75)),int=FALSE,degree=3)
reg=lm(ozone[order(ozone$T15),"max03"]"base)
plot(max03"T15,data=ozone,main="Régression B-spline",pch="+")
lines(ozone[order(ozone$T15),"T15"],reg$fit, col="red",lwd=3)
```

Cas multidimensionnel

Modèle paramétrique :

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1}^2 + \beta_4 x_{i1} x_{i2} + \dots + \beta_i x_{ip} + \varepsilon_i$$

Extension naturelle au modèle non paramétrique :

$$Y_i = f(x_{i1}, x_{i2}, ..., x_{ip}) + \varepsilon_i$$

Fléau de la dimension (peu de données dans un voisinage multidimensionnel) \Rightarrow Estimation trop difficile de f

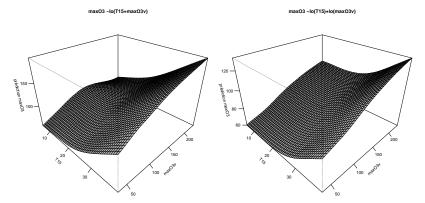
Simplification avec modèle additif :

$$Y_i = f_1(x_{i1}) + f_2(x_{i2}) + ... + f_p(x_{ip}) + \varepsilon_i$$

Cas multidimensionnel

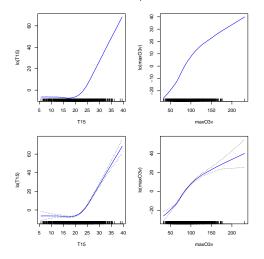
Différence entre :

- modèle non paramétrique général : $Y = f(x_1, x_2, ..., x_p) + \varepsilon$
- et modèle additif $Y = f_1(x_1) + f_2(x_2) + ... + f_p(x_p) + \varepsilon$



Modèle additif

Quel est l'effet d'un facteur sur Y, les autres étant constants?



> library(gam)

> res.gam = gam(max03~lo(T15)+lo(max03v),data=ozone)

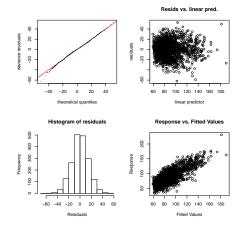
> plot(res.gam,ask = TRUE)

Package mgcv

Package très complet Utilise principalement les splines

Propose une solution pour le choix délicat des paramètres de lissage par validation croisée généralisée

Package mgcv



```
library(mgcv)
res.mgcv = gam(max03~s(T15)+s(max03v),data=ozone)
plot(res.mgcv,col="red")
gam.check(res.mgcv)
```

Choix de modèle

Besoin de sélectionner des variables

- Test de modèles emboîtés
- Critère AIC ou BIC
- Par validation croisée : trouver le modèle à une variable qui prédit le mieux, puis à 2 variables, ...

Choix de modèle

```
> library(gam)
> res.gam = gam(max03~lo(T15)+lo(max03v),data=ozone)
> res.gam1 = gam(max03~lo(max03v),data=ozone)
> anova(res.gam1,res.gam)
Analysis of Deviance Table
Model 1: max03 \sim lo(max03v)
Model 2: max03 \sim lo(T15) + lo(max03v)
 Resid. Df Resid. Dev
                          Df Deviance P(>|Chi|)
    1881.1
               605476
    1877.7
           415221 3.4195 190255 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
> res.gam2 = gam(max03~lo(T15),data=ozone)
> anova(res.gam2,res.gam)
Analysis of Deviance Table
Model 1: max03 ~ lo(T15)
Model 2: max03 ~ lo(T15) + lo(max03v)
 Resid. Df Resid. Dev
                          Df Deviance P(>|Chi|)
    1881.6
               613498
1
    1877.7 415221 3.8569 198277 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Méthode IBR: iterative Bias Reduction

Utiliser un lisseur très lisse (donc très biaisé)

- estimer le biais
- corriger le lisseur en soustrayant le biais

et itérer.

```
library(ibr)
res.ibr <- ibr(max03~.,data=ozone[ind.app,],control.par=list(really.big=TRUE),df=1.1)
pred.ibr <- predict(res.ibr,newdata=ozone[ind.pred,])</pre>
```

Prendre df = 1.1 dans la pratique

Conclusion

Peu de données \Rightarrow faire des hypothèses sur les liaisons (modèles paramétriques)

Beaucoup de données ⇒ possibilité d'utiliser des modèles additifs

Problèmes : éviter le surajustement (sélection de variables), choix des paramètres de lissage

Extension aux modèles additifs généralisés (GAM) : l'erreur peut ne pas être normale, Y peut être qualitative

ntroduction Lisseurs Modèles additifs Conclusion

Références

Packages R:

- package KernSmooth
- package splines
- fonction gam du package gam
- fonction gam du package mgcv
- fonction ibr du package ibr

Références bibliographiques :

- Trevor Hastie & Rob Tibshirani (1995). Generalized Additive Models. Chapman & Hall
- Simon Wood (2006). Generalized additive models :an introduction with R. Chapman & Hall