Multiple Correspondence Analysis

François Husson

Applied Mathematics Department - AGROCAMPUS OUEST
husson@agrocampus-ouest.fr

Plan

(1) Data - issues

(2) Studying the individuals
(3) Studying the categories
(4) Interpretation aids

The data

The data

Goals

(1) Studying the individuals

One individual = one row of the CDT $=$ set of categories Similarity of individuals - Inter-individual variability Principal axes of the inter-individual variability (in relation to the categories)
(2) Studying the variables

Links between qualitative variables
(in relation to the categories)
Visualization of the set of associations between categories Synthetic variables
(quantitative indicators based on the qualitative variables)
\Rightarrow Similar problem to PCA

Leisure activity data

- Extract from 2003 INSEE survey on identity construction, called the "history of life" survey
- 8403 individuals
- 2 sorts of variables :
- Which of the following leisure activities do you practice regularly: Reading, Listening to music, Cinema, Shows, Exhibitions, Computer, Sport, Walking, Travel, Playing a musical instrument, Collecting, Voluntary work, Home improvement, Gardening, Knitting, Cooking, Fishing, Number of hours of TV per day on average
- supplementary variables (4 questions) : sex, gender, profession, marital status

Leisure activity data

Hobbies

Hobbies	Number
Listening music	5947
Reading	5646
Walking	4175
Cooking	3686
Mechanic	3539
Travelling	3363
Cinema	3359
Gardening	3356
Computer	3158
Sport	3095
Exhibition	2595
Show	2425
Playing music	1460
Knitting	1413
Volunteering	1285
Fishing	945
Collecting	862
Number of hours watching TV	0
	1
	2
	3

Sociodemographic variables

Sex	Female	4616
	Male	3787
Age	$[15,25]$	857
	$(25,35]$	1302
	$(35,45]$	1646
	$(45,55]$	1837
	$(55,65]$	1257
	$(65,75]$	937
	$(75,85]$	482
	$(85,100]$	85
Marital	Divorcee	792
status	Married	4333
	Remarried	404
	Single	2140
	Widower	734
Profession	employee	2552
	foreman	735
	management	1052
	manual labourer	1161
	technician	401
	unskilled worker	792
	other	212
	No answer	1498

MCA 1 : active $=$ leisure activity, then use supplementary data for interpretation

- 1 individual $=$ vector of leisure activities
- Principal axes of variability of leisure vectors
- Links between these axes and the supplementary variables

MCA 2 : active $=$ supplementary variables, leisure activities as supplementary information MCA 3 : active $=$ BOTH

Transforming the complete disjunctive table

An individual's weight is $\frac{1}{l}$
$y_{i k}=1$ if the i-th individual is in k-th category of the j-th variable (for each p_{k})
$=0$ otherwise

$$
\begin{gathered}
\text { Idea : } x_{i k}=y_{i k} / p_{k} \\
\frac{\sum_{i=1}^{\prime} x_{i k}}{l}=\frac{1}{l} \frac{\sum_{i=1}^{l} y_{i k}}{p_{k}}=\frac{1}{l} \frac{l \times p_{k}}{p_{k}}=1 \\
\text { Centering : } x_{i k}=y_{i k} / p_{k}-1
\end{gathered}
$$

Plan

(1) Data - issues
(2) Studying the individuals
(3) Studying the categories
(4) Interpretation aids

Point cloud of individuals

$d_{i, i^{\prime}}^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(x_{i k}-x_{i^{\prime} k}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(\frac{y_{i k}}{p_{k}}-\frac{y_{i^{\prime} k}}{p_{k}}\right)^{2}=\frac{1}{J} \sum_{k=1}^{K} \frac{1}{p_{k}}\left(y_{i k}-y_{i^{\prime} k}\right)^{2}$

- 2 individuals with same categories : distance $=0$
- 2 individuals with many shared categories: small distance
- 2 individuals, only 1 with a rare category : large distance to indicate this
- 2 individuals share rare category : small distance to indicate this shared specificity
Point cloud of individuals

$$
\begin{gathered}
d_{i, i^{\prime}}^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(x_{i k}-x_{i^{\prime} k}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(\frac{y_{i k}}{p_{k}}-\frac{y_{i^{\prime} k}}{p_{k}}\right)^{2}=\frac{1}{J} \sum_{k=1}^{K} \frac{1}{p_{k}}\left(y_{i k}-y_{i^{\prime} k}\right)^{2} \\
d\left(i, G_{l}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(x_{i k}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(\frac{y_{i k}}{p_{k}}-1\right)^{2}=\frac{1}{J} \sum_{k=1}^{K} \frac{y_{i j}}{p_{k}}-1 \\
\quad \operatorname{Inertia}\left(N_{l}\right)=\sum_{i=1}^{l} \underbrace{\frac{1}{J} d^{2}(i, O)}_{\text {inertia of } i}=\sum_{i=1}^{l}\left(\frac{1}{I J} \sum_{k=1}^{K} \frac{y_{i k}}{p_{k}}-\frac{1}{l}\right)=\frac{K}{J}-1
\end{gathered}
$$

Building the point cloud of individuals

Getting factor axes, as usual, like for all factor analysis methods

Sequential construction: look for the axis maximizing the inertia and orthogonal to previous axes

Leisure activity data

- Extract from 2003 INSEE survey on identity construction, called the "history of life" survey
- 8403 individuals
- 2 sorts of variables :
- Which of the following leisure activities do you practice regularly: Reading, Listening to music, Cinema, Shows, Exhibitions, Computer, Sport, Walking, Travel, Playing a musical instrument, Collecting, Voluntary work, Home improvement, Gardening, Knitting, Cooking, Fishing, Number of hours of TV per day on average
- supplementary variables (4 questions) : sex, gender, profession, marital status

Diagram showing the inertia

Representation of the point cloud of individuals

Representation of the point cloud of individuals

What kind of pattern might we see?

The Guttman effect

Individuals shown in terms of the gardening variable

Idea : use the categories and variables to interpret the plot of the individuals

Put a category at the barycenter of the individuals in it

Showing the categories with the point cloud of individuals
Each category is at the barycenter of the individuals in it

Activity not performed - activity performed

Showing the categories with the point cloud of individuals

Activity not performed - activity performed

Showing the categories with the point cloud of individuals

	Read	Listen music	Cinema	Show	Exhib	Comput	Sport	Walk	Travel	Play music	Collec	Volunteering	Mechanic	Garden	Knitt	Cook	Fish	TV
5938	Y	Y	n	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	y	y	n	3
2432	y	Y	y	Y	y	Y	n	Y	Y	Y	y	Y	Y	y	Y	Y	n	2
8325	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	4
203	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	4

Showing the categories with the point cloud of individuals

	Read	Listen music	Cinema	Show	Exhib	Comput	Sport	Walk	Travel	Play music	Collec	Volunteering	Mechanic	Garden	Knitt	Cook	Fish	TV
255	y	y	y	y	y	Y	Y	y	y	Y	n	y	n	n	n	n	n	1
6766	Y	y	y	Y	y	Y	y	Y	y	Y	n	n	n	n	n	y	n	0
5676	n	n	n	n	n	n	n	n	n	n	n	n	Y	Y	Y	Y	n	4
1143	Y	n	n	n	n	n	n	n	n	n	n	n	Y	Y	y	n	n	4

Showing the variables to help interpret the axes

Idea: look at coordinates of projected individuals on each axis, and calculate a value for the connection between these coordinates and each qualitative variable

Correlation ratio between the j-th variable and s-th component : $\eta\left(v_{. j}, F_{s}\right)$
$\eta^{2}\left(F_{2}\right.$, Gardening $)=0.453$
$\eta^{2}\left(F_{1}\right.$, Gardening $)=0.047$

Showing the variables to help interpret the axes

Using the squared correlation ratios

The s-th axis is orthogonal to the t-th for all $t<s$, and the most related to the qualitative variables in the η^{2} sense : $F_{s}=\max _{F} \sum_{j=1}^{J} \eta^{2}\left(F, v_{. j}\right)$

Plan

(1) Data - issues
(2) Studying the individuals
(3) Studying the categories
(4) Interpretation aids

Point cloud of categories

$$
\operatorname{Var}(k)=d^{2}(k, O)=\sum_{i=1}^{l} \frac{1}{I} x_{i k}^{2}=\sum_{i=1}^{l}\left(\frac{y_{i k}}{p_{k}}-1\right)^{2}=\frac{1}{p_{k}}-1
$$

$$
\text { (si } J=10) \quad \text { Inertia(k) } \quad 0.05 \quad 0.08 \quad 0.09 \quad 0.099
$$

$$
\begin{gathered}
\operatorname{Inertia}(k)=\frac{p_{k}}{J} d^{2}(k, O)=\frac{1-p_{k}}{J} \\
d^{2}\left(k, k^{\prime}\right)=\sum_{i=1}^{\prime}\left(\frac{y_{i k}}{p_{k}}-\frac{y_{i k^{\prime}}}{p_{k^{\prime}}}\right)^{2}=\frac{p_{k}+p_{k^{\prime}}-2 p_{k k^{\prime}}}{p_{k} p_{k^{\prime}}}
\end{gathered}
$$

Inertia of categories or variables

$$
\begin{gathered}
\operatorname{Inertia}(k)=\frac{1-p_{k}}{J} \\
\operatorname{Inertia}(j)=\frac{1}{J} \sum_{k=1}^{K_{j}}\left(1-p_{k}\right)=\frac{K_{j}-1}{J}
\end{gathered}
$$

Variable	No. of categories	Inertia	No. dim. of subspace
sex	2	$1 / \mathrm{J}$	1
region	21	$20 / \mathrm{J}$	20
district	96	$95 / \mathrm{J}$	95

BUT : the inertia $\frac{K_{j}-1}{J}$ is spread across a $K_{j}-1 \mathrm{dim}$. subspace

$$
\text { Total inertia }=\sum_{j=1}^{J} \frac{K_{j}-1}{J}=\frac{K}{J}-1
$$

Representing the point cloud of categories

Sequential search for axes - as usual in factor analysis : each axis must maximize the inertia and be orthogonal to all previous ones

Activity not performed - activity performed

Projections of the individuals

Each individual put at barycenter of the categories they possess

Barycentric representation - simultaneous representation

Optimal representation of individuals Categories at the barycenter :

Optimal representation of categories Individuals at the barycenter:

$$
F_{s}(i)=\quad \sum_{j=1}^{J} \frac{y_{i k}}{J} G_{s}(k)
$$

Barycentric representation - simultaneous representation

Optimal representation of individuals Categories at the pseudo-barycenter:

$$
G_{s}(k)=\frac{1}{\sqrt{\lambda_{s}}} \sum_{i=1}^{I} \frac{y_{i k}}{I_{k}} F_{s}(i)
$$

Optimal representation of categories Individuals at the pseudo-barycenter :

$$
F_{s}(i)=\frac{1}{\sqrt{\lambda_{s}}} \sum_{j=1}^{J} \frac{y_{i k}}{J} G_{s}(k)
$$

Plan

(1) Data - issues
(2) Studying the individuals
(3) Studying the categories
4) Interpretation aids

Inertia and percentage of inertia in MCA

$$
\lambda_{s}=\frac{1}{J} \sum_{j=1}^{J} \eta^{2}\left(F_{s}, v_{. j}\right)
$$

$\Rightarrow \lambda_{s}$ is the mean of the squared correlation ratios

- Individuals live in $\mathbb{R}^{K-J} \Rightarrow$ low percentages of inertia
- Maximal percentage for given axis s :

$$
\begin{aligned}
\frac{\lambda_{s}}{\sum_{t=1}^{K-J} \lambda_{t}} \times 100 & \leq \frac{1}{\frac{K-J}{J}} \times 100 \\
& \leq \frac{J}{K-J} \times 100
\end{aligned}
$$

With $K=100, J=10: \lambda_{s} \leq 11.1 \%$

- Mean of non-zero eigenvalues : $\frac{1}{K-J} \times \sum_{t} \lambda_{t}=\frac{1}{K-J} \times\left(\frac{K}{J}-1\right)=\frac{1}{J}$
\Rightarrow interpret the axes of inertia above $1 / J$

Contributions and quality of representation

- Contributions and $\cos ^{2}$ for individuals and categories
\Rightarrow distant categories don't necessarily contribute a lot (depends on their frequency)
\Rightarrow small $\cos ^{2}$ as expected - many dimensions
- Absolute contribution of a variable :

$$
\operatorname{CTR}(j)=\sum_{k=1}^{K_{j}} \operatorname{CTR}(k)=\frac{\eta^{2}\left(F_{s}, v_{. j}\right)}{J}
$$

- Relative contribution : $\operatorname{CTR}(j)=\frac{\eta^{2}\left(F_{s}, V_{j}\right)}{J \lambda_{s}}$

Representing supplementary elements

Use transition formulas to represent supplementary elements (individuals, variables, etc.)

Quantitative supplementary variables

\Rightarrow What can we do with quantitative variables?

- Supplementary information : project onto the axes, calculate correlation coefficients with each axis
- break up quantitative variable into categories/classes

Describing the axes

Using qualitative variables (Fisher test), using categories (Student test), using quantitative variables (correlations)
Quantitative variables
correlation
nb. p. value
nbivitees 0.9753459

Categorical variables
R2 p.value
$\begin{array}{lrl}\text { Reading } & 0.239 & 0.00 \mathrm{e}+00 \\ \text { Listening music } & 0.275 & 0.00 \mathrm{e}+00\end{array}$
Cinema $0.389 \quad 0.00 \mathrm{e}+00$
Show
Exhibition
Computer
Sport
Walking
Travelling $0.355 \quad 0.00 \mathrm{e}+00$
Playing music $0.209 \quad 0.00 \mathrm{e}+00$
Mechanic 0.135 8.82e-267
Cooking 0.125 9.42e-247
Profession
Volunteering
$0.1287 .20 \mathrm{e}-245$ Listening music_N
0.109 2.25e-212 Reading_N

Categories
Estimate p.value
Playing music_Y
Travelling_Y
Walking_Y
Sport_Y $0.247 \quad 0$
Computer_Y
Exhibition_Y
Show_Y
Sport_N
Computer_N
Exhibition_N
Show_N
0.268

0
0.270

0
0.1840

Exhibition
.
0
0.3040
0.3040
-0.2470
-0.263 0
$-0.304 \quad 0$
$-0.304 \quad 0$
Cinema_N -0.283 0
-0.257
0
-0.2310

Different MCA strategy : Burt table

Burt table :

- Pairwise links between variables (like a correlation matrix between quantitative variables)
- Correspondence analysis on Burt table
- Gives results uniquely for categories : same representation but different eigenvalues: $\lambda_{s}^{\text {Burt }}=\left(\lambda_{s}^{T D C}\right)^{2}$
- $\lambda_{s}^{T D C}$ mean of squared correlation ratios

\Rightarrow The MCA only depends on pairwise links between variables (just like PCA only depends on the correlation matrix)

Conclusion

- MCA is the best factor analysis method for tables of individuals with qualitative variables
- Eigenvalues represent the means of squared correlation ratios
- The values of these squared links are particularly important when there are lots of variables
- Return to the data by analyzing the contingency table with CA
- Convergence of CDT analysis and Burt table analysis is a strong argument in favor of the general method
- MCA can be use to pre-treat data before doing classification

Extras

Husson F., Lê S. \& Pagès J. (2017)
Exploratory Multivariate Analysis by Example Using R 2nd edition, 230 p., CRC/Press.

The FactoMineR package for running MCA : http://factominer.free.fr

Videos on Youtube :

- Youtube channel : youtube.com/HussonFrancois
- video playlist in English
- video playlist in French

