François Husson & Magalie Houée-Bigot

Department of Applied Mathematics - Rennes Agrocampus

husson@agrocampus-ouest.fr

Correspondence Analysis (CA)

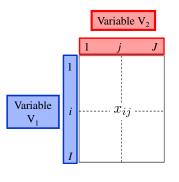
- ① Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- 5 Simultaneous representation of rows and columns
- 6 Interpretation aids

Correspondence Analysis (CA)

- ① Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- 5 Simultaneous representation of rows and columns
- 6 Interpretation aids

Data

Contingency tables



 x_{ij} : number of individuals with category i of the variable I category j of the variable J

Characters in Words
Phèdre (Racine)
Perfume Descript

Descriptors

Biodiver sity

Species

Number of times character *i* uses the word *j*

Number of times perfume i was described with the word j

Abundance of species *j* in place *i*

 \Longrightarrow Examples where a χ^2 test for independence can be applied

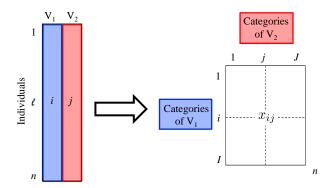
Nobel prize data

	Chemistry	Economic	Literature	Medicine	Peace	Physics	Sum
		sciences					
Canada	4	3	2	4	1	4	18
France	8	3	11	12	10	9	53
Germany	24	1	8	18	5	24	80
Italy	1	1	6	5	1	5	19
Japan	6	0	2	3	1	11	23
Russia	4	3	5	2	3	10	27
UK	23	6	7	26	11	20	93
USA	51	43	8	70	19	66	257
Sum	121	60	49	140	51	149	570

Is there a link between countries and prize categories? Do some countries specialize in certain prizes?

Data

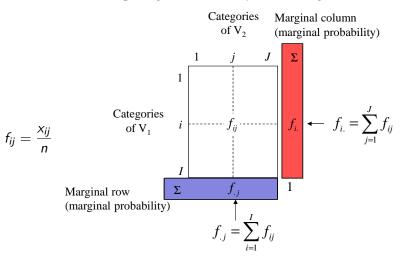
n individuals and 2 qualitative variables



Distribution of the *n* individual in the $I \times J$ boxes

Data

From contingency tables to probability tables



Link between V1 and V2: Deviation of the observed data from the independence model

Correspondence Analysis (CA)

- 1 Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- 5 Simultaneous representation of rows and columns
- 6 Interpretation aids

Links and independence between qualitative variables

Independence model:

Independent events: $P(A \text{ and } B) = P(A) \times P(B)$

Independent qualitative variables: $\forall i, \ \forall j, \ f_{ij} = f_{i.} \times f_{.j}$ \Rightarrow Joint probability = product of marginal probabilities

Another way to write it: $\frac{f_{ij}}{f_{i.}} = f_{.j}$ $\frac{f_{ij}}{f_{.j}} = f_{i.}$ \Rightarrow Conditional probability = marginal probability

Links and independence between qualitative variables

Deviation of observed data (f_{ij}) from independence model $(f_{i}, f_{.j})$

1 Significance of the link/deviation: χ^2 test

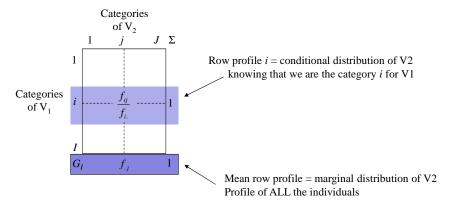
$$\chi^2_{obs} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(\text{obs. num.} - \text{theor. num.})^2}{\text{theor. num}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n \, f_{ij} - n \, f_{i.} \, f_{.j})^2}{n \, f_{i.} \, f_{.j}}$$

$$\chi^2_{obs} = \sum_{i=1}^{I} \sum_{j=1}^{J} n \frac{(\text{observed probability} - \text{theoretical probability})^2}{\text{theoretical probability}} = n \Phi^2$$

- 2 Strength of the link = Φ^2 = deviation of observed probabilities from theoretical ones
- 3 Type of link = connections between certain categories
 - CA works with the table of probabilities says nothing about significance visualizes the sorts of links there are between the variables

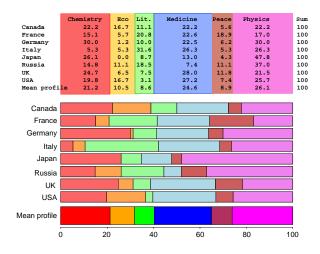
How does CA detect a deviation from independence?

Analysis by row:
$$\frac{f_{ij}}{f_{i.}} = f_{.j}$$



Deviation from independence using a multidimensional approach

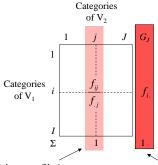
Comparing the row profile to the mean profile



Do Italians win particular categories of Nobel prize?

How does CA detect a deviation from independence?

Analysis by column: $\frac{f_{ij}}{f_{.i}} = f_{i.}$



Column profile i

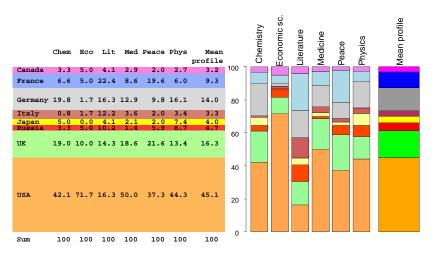
= conditional distribution of V1 knowing that we are *j* for V2

Mean column profile = marginal distribution of V1 Profile of ALL the individuals

CA compares the column profile to the mean profile

Deviation from independence using a multidimensional approach

Comparing the column profile to the mean profile

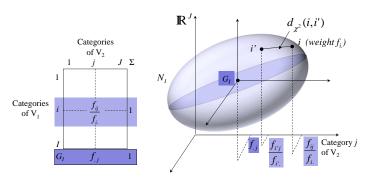


Is the country distribution for literature prizes the same as the country distribution for total prizes?

Correspondence Analysis (CA)

- 1 Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- 5 Simultaneous representation of rows and columns
- 6 Interpretation aids

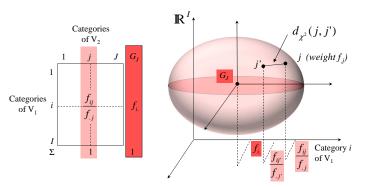
The cloud of row profiles



Distance between two profiles:
$$d_{\chi^2}^2(i,i') = \sum_{j=1}^J \frac{1}{f_{,j}} \left(\frac{f_{ij}}{f_{i.}} - \frac{f_{i'j}}{f_{i'.}}\right)^2$$

Distance to the mean profile G_l : $d_{\chi^2}^2(i,G_l) = \sum_{i=1}^J \frac{1}{f_{i,i}} \left(\frac{f_{ij}}{f_{i,i}} - f_{,j}\right)^2$

The cloud of column profiles



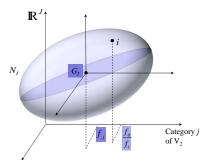
Distance between two profiles:
$$d_{\chi^2}^2(j,j') = \sum_{i=1}^{I} \frac{1}{f_{i.}} \left(\frac{f_{ij}}{f_{.j}} - \frac{f_{ij'}}{f_{.j'}} \right)^2$$

Distance to the mean profile G_J : $d_{\chi^2}^2(j,G_J) = \sum_{i=1}^{I} \frac{1}{f_{i.}} \left(\frac{f_{ij}}{f_{.j}} - f_{i.} \right)^2$

What happens when there is independence?

For all
$$i$$
, $\frac{f_{ij}}{f_{i.}} = f_{.j}$

- ⇒ the profiles are the same as the mean profile
- $\Rightarrow N_I$ becomes just G_I (the cloud has zero inertia)



Same for the columns: for all j, $\frac{f_{ij}}{f_i} = f_{i}$.

The further the data is from independence, the more the profiles spread from the origin

Inertia(
$$N_{I}/G_{I}$$
) = $\sum_{i=1}^{I} Inertia(i/G_{I}) = \sum_{i=1}^{I} f_{i.} d_{\chi^{2}}^{2}(i, G_{I})$
= $\sum_{i=1}^{I} f_{i.} \left(\sum_{j=1}^{J} \frac{1}{f_{.j}} \left(\frac{f_{ij}}{f_{i.}} - f_{.j} \right)^{2} \right)$
= $\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(f_{ij} - f_{i.}f_{.j})^{2}}{f_{i.}f_{.j}} = \frac{\chi^{2}}{n} = \phi^{2}$

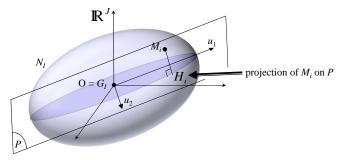
 ϕ^2 measures the strength of the link

Studying the inertia of N_I turns out to be the same as studying deviation from independence

Same for N_I : $Inertia(N_I/G_I) = Inertia(N_I/G_I)$ (duality)

Visualizing the row (or column) cloud

Decompose the inertia of N_I using factor analysis Project N_I onto a sequence of orthogonal axes with maximal inertia

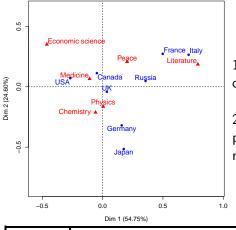


Find P such that $\sum_{i=1}^{\infty} f_{i.} \left(OH_i\right)^2$ is maximal

u₁ axis of maximal inertia u_2 axis of maximal inertia such that $u_2 \perp u_1$

Inertia associated with the s-th axis: $\sum f_{i.} \left(\mathit{OH}_i^s
ight)^2 = \lambda_s$

How to interpret? Our example:



1st axis: contrasts science other categories

2nd axis: contrasts physics/chemistry economic sciences

	Chemistry	Economic science	Literature	Medicine	Peace	Physics	Sum
Italy	5.26	5.26	31.58	26.32	5.26	26.32	100
UK	24.73	6.45	7.53	27.96	11.83	21.51	100
Row margin	21.23	10.53	8.60	24.56	8.95	26.14	100

Correspondence Analysis (CA)

- 1 Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- **6** Simultaneous representation of rows and columns
- 6 Interpretation aids

1 Quality of representation of N_I on the sth axis

$$\frac{\text{Projected inertia of } N_l \text{ on } u_s}{\text{Total inertia of } N_l} = \frac{\sum_{i=1}^{l} f_{i.} \left(OH_i^s\right)^2}{\sum_{i=1}^{l} f_{i.} \left(OM_i\right)^2} = \frac{\lambda_s}{\sum_{i=1}^{K} \lambda_k}$$

	Inertia	Inertia (%)
F1	0.0833	54.75
F2	0.0374	24.60
F3	0.0217	14.23
F4	0.0079	5.18
F5	0.0019	1.25
Sum	0.1522	100

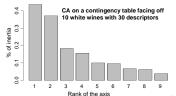
 \Rightarrow Deviation from independence well-summarized by the first two axes (79 %)

2 Projected inertia can be summed across axes (because orthogonal)

$$\sum_{k=1}^{K} \lambda_k = \text{Inertia } (N_I) = \Phi^2$$

Here $n\Phi^2 = 570 \times 0.1522 = \chi^2 = 86.75 \implies \text{p-value} = 2.77 \times 10^{-6}$

3 How the inertia decreases can help choose number of axes to keep

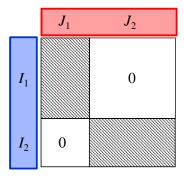


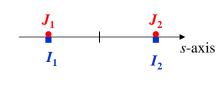
Inertia (= eigenvalues)

In CA:
$$0 \le \lambda_s \le 1$$

In CA:
$$0 \le \lambda_s \le 1$$
 In PCA (normalized): $1 \le \lambda_1$

What structure does an eigenvalue of 1 correspond to?





⇒ Partition into two classes of rows and columns Exclusive associations between classes

Inertia (= eigenvalues)

Data: recognizing three flavors (sweet, sour, bitter)
For each flavor, we asked 10 people to try to recognize taste of a sample

	Perc.	Perc.	Perc.
	sweet	sour	bitter
Sweet	10	0	0
Sour	0	9	1
Bitter	0	3	7

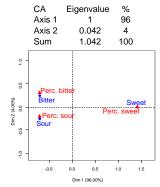
Figenvalue

CA

		0, (9	Jiivaio	,	U
		Axis 1		1	72.7	727
		Axis 2	0	.375	27.2	273
		Sum	1	.375	10	00
	0	▲Perc.	oitter			
(%4.2	0.5	Bitter				
(27.2	0.0					Sweet
Dim2 (27.27%)	0			F	Perc. sw	eet
	-0.5	▲ Perc.	sour			
	-1.0	Sour		- 1	-	
		-0.5	0.0	0.5	1.0	1.5

Dim 1 (72,73%)

	Perc.	Perc.	Perc.
	sweet	sour	bitter
Sweet	10	0	0
Sour	0	7	3
Bitter	0	5	5



	Chemistery	Economic science	Literature	Mathematics	Medicine	Peace	Physics
Canada	4	3	2	1	4	1	4
France	8	3	11	11	12	10	9
Germany	24	1	8	1	18	5	24
Italy	1	1	6	1	5	1	5
Japan	6	0	2	3	3	1	11
Russia	4	3	5	9	2	3	10
UK	23	6	7	4	26	11	20
USA	51	43	8	13	70	19	66

	Inertia	Inertia (%)
F1	0.0833	54.75
F2	0.0374	24.60
F3	0.0217	14.23
F4	0.0079	5.18
F5	0.0019	1.25
Sum	0.1522	100

 $\lambda_1=0.0833\ll 1\Rightarrow$ i.e., we are far from an exclusive association between certain rows and columns

 $\Phi^2=0.1522\ll 5 \Rightarrow$ we are far from a perfect link. i.e., far from exclusive association between categories of the two variables

Correspondence Analysis (CA)

- 1 Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- 5 Simultaneous representation of rows and columns
- 6 Interpretation aids

Simultaneous representation of rows and columns

Transition formulas = barycentric properties

$$F_s(i) = \frac{1}{\sqrt{\lambda_s}} \sum_{j=1}^J \frac{f_{ij}}{f_{i.}} G_s(j) \\ \frac{f_{ij}}{f_{i.}} : j\text{-th element of profile } i \\ G_s(j): \text{ coord. of column } j \text{ on the } s\text{-th axis} \\ \lambda_s: \text{ inertia associated with } s\text{-th axis (in CA, } \lambda_s \leq 1)$$

Along the s-th axis, we calculate the barycenter of each column, with column j given a weight $f_{ij}/f_{i.}$

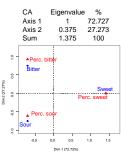
The smaller the λ_s , the further the barycenter from the origin: $1/\sqrt{\lambda_s} \geq 1$

$$G_s(j) = \frac{1}{\sqrt{\lambda_s}} \sum_{i=1}^{l} \frac{f_{ij}}{f_{ij}} F_s(i)$$

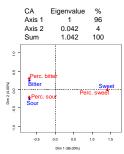
Simultaneous representation and inertia

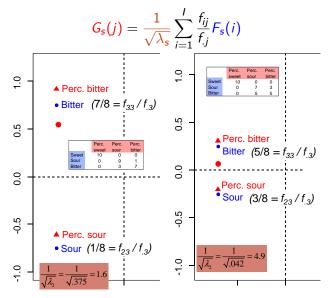
$$G_s(j) = \frac{1}{\sqrt{\lambda_s}} \sum_{i=1}^{l} \frac{f_{ij}}{f_{ij}} F_s(i)$$

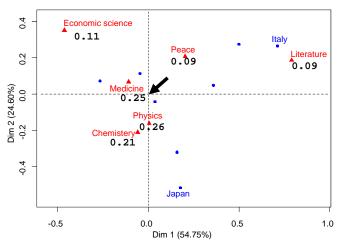
	Perc. sweet	Perc.	Perc. bitter
Sweet	10	0	0
Sour	0	9	1
Bitter	0	3	7



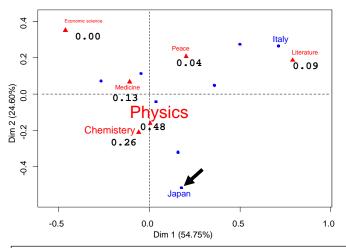
	Perc.	Perc.	Perc.
	sweet	sour	bitter
Sweet	10	0	0
Sour	0	7	3
Bitter	0	5	5





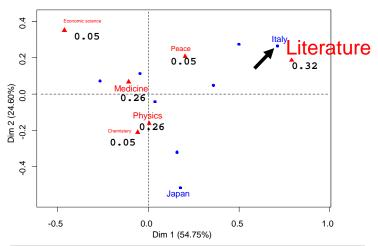


Chemistery Economic Literature Medicine Peace Physics Italy 5.26 5.26 31.58 26.32 5.26 26.32 0.00 8.70 Japan 26.09 13.04 4.35 47.83 Mean profile 21.23 10.53 8.60 24.56 8.95 26.14



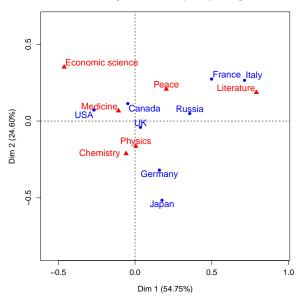
Chemistery Economic Literature Medicine Peace Physics Italy 5.26 5.26 31.58 26.32 5.26 26.32 0.00 8.70 Japan 26.09 13.04 4.35 47.83 Mean profile 21.23 10.53 8.60 24.56 8.95 26.14

The barycentric property



	Chemistery	Economic	Literature	Medicine	Peace	Physics
Italy	5.26	5.26	31.58	26.32	5.26	26.32
Japan	26.09	0.00	8.70	13.04	4.35	47.83
Mean pr	ofile 21.23	10.53	8.60	24.56	8.95	26.14

The barycentric property



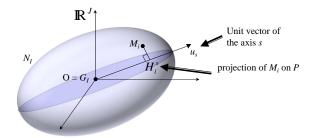
Correspondence Analysis (CA)

- Data
- 2 Independence model
- 3 Point clouds and what they mean
- 4 Percentage of inertia, and inertia in CA
- **6** Simultaneous representation of rows and columns
- 6 Interpretation aids

Interpretation aid: quality of the representation

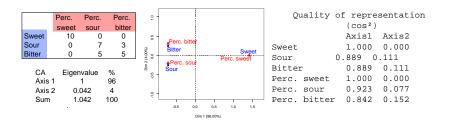
An indicator of the quality of representation of a point (or cloud):

$$\frac{\text{projected inertia of } M_i \text{ on } u_s}{\text{total inertia of } M_i} = \frac{f_{i.}(OH_i^s)^2}{f_{i.}(OM_i)^2} = \cos^2(\overrightarrow{OM_i}, u_s)$$



This indicator show how much the deviation of a profile from the mean profile is shown in an axis or plane

The quality of representation: example

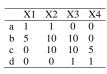


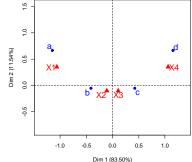
 \Rightarrow Interpretation of the graph based on extreme points with good quality representations

Absolute indicator: projected inertia of M_i on $u_s = f_{i.}(OH_i^s)^2$

Relative indicator:
$$\frac{\text{proj. inertia of } M_i \text{ on } u_s}{\text{inertia of axis } s} = \frac{f_i.(OH_i^s)^2}{\lambda_s}$$

- We can sum the contributions of several elements
- This shows how much we can consider that an axis is due to one or several elements
- Practical compromise between distance to the origin, and weights
- Useful in big tables for selecting a subset of elements when starting interpretation (jointly with the quality of representation)





	Inertia	%
Axis 1	0.258	83.501
Axis 2	0.036	11.538
Axis 3	0.015	4.96

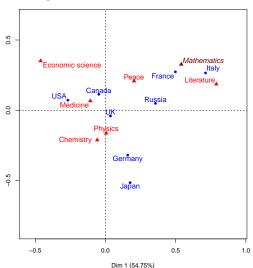
	Axis 1	Axis 2
a	18.879	46.296
b	31.121	3.704
c	31.121	3.704
d	18.879	46.296
Σ	100	100

 \Rightarrow The extreme points are not necessarily the ones that contribute most to axis construction

Supplementary information

$$G_s(j) = \frac{1}{\sqrt{\lambda_s}} \sum_{i=1}^{l} \frac{f_{ij}}{f_{ij}} F_s(i)$$

Mathematics is on the French and Russian side, also the side of literature and peace, but opposite the sciences



Distributional equivalence

Distributional equivalence: if rows with the same values are grouped, the CA results are totally equivalent (same for columns)

Application to analysis of texts:

Thanks to distributional equivalence, if two (or more) words are used in the same circumstances, their coordinates will be close together, so doing the analysis with both, or just one, is entirely equivalent

 \Rightarrow very useful (to group singular and plural versions of words, verb conjugations, etc.)

Maximum number of axes, and Cramer's V

Point cloud for rows: I points in a J-dimensional space

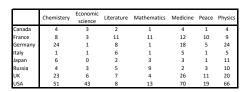
$$\begin{array}{c} \textit{J} \; \text{dim. but 1 constraint (profiles)} \Rightarrow \textit{S} \leq \textit{J} - 1 \\ \textit{I} \; \text{points in at most } \textit{I} - 1 \; \text{dim.} \; \Rightarrow \textit{S} \leq \textit{I} - 1 \end{array} \right\} \textit{S} \leq \min(\textit{I} - 1, \textit{J} - 1)$$

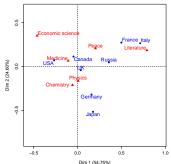
$$\Longrightarrow \Phi^2 = \sum_{k=1}^{\min(I-1,J-1)} \lambda_k \leq \min(I-1,J-1)$$

leading to the idea of a bounded indicator of the link between 2 variables:

Cramer's V
$$= \frac{\Phi^2}{\min(I-1,J-1)} \in [0;1]$$

Conclusions for our example





CA gives a good summary visual of the deviation from independence, which helps to understand the data table (and especially, big data tables)

As for this data:

- Most of the deviation from independence appears in the separation of Science vs The rest. And to a lesser extent: physics/chemistry vs economics
- The position of each country shows its strengths in getting various prizes

Conclusion

To study the link between qualitative variables, we build a contingency table

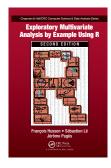
The link is found in the difference between this table, and what it would look like if there was independence

Correspondence analysis:

- build a point cloud of rows (and of columns) whose total inertia measures the strength of the deviation from independence
- break down this total inertia into a sequence of axes of decreasing importance, each representing some feature of the link between the variables
- visually represent the rows and columns in such a way that their position on the graph reflects their participation in the deviation from independence

Bibliography

For more information in the same vein, have a look at this video:



Husson F., Lê S. & Pagès J. (2017) Exploratory Multivariate Analysis by Example Using R 2nd edition, 230 p., CRC/Press.