Analyse des Correspondances Multiples

François Husson \& Magalie Houée-Bigot

Laboratoire de mathématiques appliquées - AGROCAMPUS OUEST
husson@agrocampus-ouest.fr

Plan

(1) Données - objectifs

(2) Etude des individus

(3) Etude des modalités
4. Aide à l'interprétation

Les données

I individus
J variables qualitatives
$v_{i j}$: modalité de la variable j possédée par l'individu i

Exemple : enquête où $/$ personnes sont interrogées sur J questions à choix multiples

Les données

Objectifs - problématique

(1) Etude des individus

Un individu = une ligne du TDC = ensemble de ses modalités
Ressemblance des individus Variabilité des individus
Principales dimensions de la variabilité des individus
(en relation avec les modalités)
(2) Etude des variables

Liaisons entre variables qualitatives
(en relation avec les modalités)
Visualisation d'ensemble des associations entre modalités
Variable synthétique
(Indicateur quantitatif fondé sur des variables qualitatives)
\Rightarrow Problématique voisine de celle de l'ACP

Les données loisirs

- Extrait d'une enquête de l'Insee de 2003 sur la construction des identités, appelée < Histoire de vie»
- 8403 individus
- 2 sortes de variables :
- Parmi les loisirs suivants, indiquez ceux que vous pratiquez régulièrement : Lecture, Ecouter de la musique, Cinéma, Spectacle, Exposition, Ordinateur, Sport, Marche, Voyage, Jouer de la musique, Collection, Activité bénévole, Bricolage, Jardinage, Tricot, Cuisine, Pêche, nombre d'heures moyen par jour à regarder la TV
- le signalétique (4 questions) : sexe, âge, profession, statut matrimonial

Les données loisirs

Activités pratiquées

Activité	Effectif
Ecouter de la musique	5947
Lecture	5646
Marche	4175
Cuisine	3686
Bricolage	3539
Voyage	3363
Cinéma	3359
Jardinage	3356
Ordinateur	3158
Sport	3095
Exposition	2595
Spectacle	2425
Jouer de la musique	1460
Tricot	1413
Activité.bénévole	1285
Pêche	945
Collection	862
Nb d'heure à regarder la TV	0
	1017
	1223
	2156
	3
	4775

Signalétique

Sexe	Femme Homme	4616
	$[15,25]$	857
Age	$(25,35]$	1302
	$(35,45]$	1646
	$(45,55]$	1837
	$(55,65]$	1257
	$(65,75]$	937
	$(75,85]$	482
	$(85,100]$	85
Statut	Divorcé	792
matrimonial	Marié	4333
	remarié	404
	Seul	2140
	Veuf	734
Profession	agent de maîtrise	735
	cadre	1052
	employé	2552
	manoeuvre	792
	ouvrier	1161
	technicien	401
	autre	212
	Non réponse	1498

Les données loisirs

ACM 1 : loisirs en actif, signalétique en supplémentaire

- 1 individu $=$ profil d'activités
- Principales dimensions de variabilité des profils d'activités
- Liaisons entre ces dimensions et le signalétique

ACM 2 : signalétique en actif, loisirs en supplémentaire ACM 3 : loisirs et signalétique en actif

Transformation du tableau disjonctif complet

Le poids d'un individu est $\frac{1}{l}$
$y_{i k}=1$ si i possède la modalité k de la variable j (quel que soit p_{k})
$=0$ sinon

$$
\begin{gathered}
\text { Idée : } x_{i k}=y_{i k} / p_{k} \\
\frac{\sum_{i=1}^{\prime} x_{i k}}{l}=\frac{1}{l} \frac{\sum_{i=1}^{\prime} y_{i k}}{p_{k}}=\frac{1}{l} \frac{1 \times p_{k}}{p_{k}}=1 \\
\text { Centrage }: x_{i k}=y_{i k} / p_{k}-1
\end{gathered}
$$

Plan

(1) Données - objectifs
(2) Etude des individus
(3) Etude des modalités
(4) Aide à l'interprétation

Nuage des individus

Tableau Disjonctif Complet

$d_{i, i^{\prime}}^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(x_{i k}-x_{i^{\prime} k}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(\frac{y_{i k}}{p_{k}}-\frac{y_{i^{\prime} k}}{p_{k}}\right)^{2}=\frac{1}{J} \sum_{k=1}^{K} \frac{1}{p_{k}}\left(y_{i k}-y_{i^{\prime} k}\right)^{2}$

- 2 individus prennent les mêmes modalités: distance $=0$
- 2 individus ont en commun beaucoup de modalités : distance petite
- 2 individus dont l'un des 2 possède une modalité rare: distance grande pour prendre en compte la spécificité d'un des 2
- 2 individus ont en commun une modalité rare : distance petite pour prendre en compte leur spécificité commune
Nuage des individus
Tableau Disjonctif Complet

$$
\begin{gathered}
d_{i, i^{\prime}}^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(x_{i k}-x_{i^{\prime} k}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(\frac{y_{i k}}{p_{k}}-\frac{y_{i^{\prime} k}}{p_{k}}\right)^{2}=\frac{1}{J} \sum_{k=1}^{K} \frac{1}{p_{k}}\left(y_{i k}-y_{i^{\prime} k}\right)^{2} \\
d\left(i, G_{l}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(x_{i k}\right)^{2}=\sum_{k=1}^{K} \frac{p_{k}}{J}\left(\frac{y_{i k}}{p_{k}}-1\right)^{2}=\frac{1}{J} \sum_{k=1}^{K} \frac{y_{i j}}{p_{k}}-1 \\
\quad \operatorname{Inertie}\left(N_{l}\right)=\sum_{i=1}^{I} \underbrace{\frac{1}{J} d^{2}(i, O)}_{\text {inertie de } i}=\sum_{i=1}^{I}\left(\frac{1}{I J} \sum_{k=1}^{K} \frac{y_{i k}}{p_{k}}-\frac{1}{l}\right)=\frac{K}{J}-1
\end{gathered}
$$

Ajustement du nuage des individus

Recherche des dimensions factorielles commme pour toute méthode d'analyse factorielle

Construction séquentielle : recherche d'un axe qui maximise l'inertie et qui est orthogonal aux axes précédemment trouvés

Les données loisirs

- Extrait d'une enquête de 2003 de l'Insee sur la construction des identités, appelée < Histoire de vie»
- 8403 individus
- 2 sortes de variables :
- Parmi les loisirs suivants, indiquez ceux que vous pratiquez régulièrement : Lecture, Ecouter de la musique, Cinéma, Spectacle, Exposition, Ordinateur, Sport, Marche, Voyage, Jouer de la musique, Collection, Activité bénévole, Bricolage, Jardinage, Tricot, Cuisine, Pêche, nombre d'heures moyen par jour à regarder la TV
- le signalétique (4 questions) : sexe, âge, profession, statut matrimonial

Diagramme des inerties

Représentation du nuage des individus

Représentation du nuage des individus

Qu'est-ce qu'une représentation particulière?

Effet Guttman

Représentation des individus en fonction du jardinage

Idée : utiliser les modalités et les variables pour interpréter le graphe des individus

Une modalité au barycentre des individus qui possèdent cette modalité

Représentation des modalités dans le nuage des individus
Chaque modalité est au barycentre des individus qui la prennent

Activité non choisie - activité choisie

Représentation des modalités dans le nuage des individus

Activité non choisie - activité choisie

Représentation des modalités dans le nuage des individus

	Lecture	Ecouter musique	Ciné	Spectacle	Expo	Ordi	Sport	Marche	Voyage	Jouer musique	Collec	Activité bénévole	Bricol	Jardin	Tricot	Cuisine	Pêche	TV
5938	\bigcirc	0	N	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	0	0	0	\bigcirc	0	N	3
2432	0	0	\bigcirc	0	0	0	N	0	0	0	0	0	0	0	0	0	N	2
8325	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	4
203	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	4

Représentation des modalités dans le nuage des individus

Représentation des variables pour interpréter les dimensions

Idée : considérer les coordonnées des projetés des individus sur un axe et calculer un indicateur de liaison entre ces coordonnées et chaque variable qualitative

Rapport de corrélation entre la variable j et la composante $s: \eta\left(v_{\cdot j}, F_{s}\right)$ $\eta^{2}\left(F_{2}\right.$, Jardinage $)=0.453$

Représentation des variables pour interpréter les dimensions

Utilisation des rapports de corrélation au carré

L'axe s est orthogonal à tout axe $t(t<s)$ et est le plus lié aux variables qualitatives au sens du η^{2} :
$F_{s}=\max _{F} \sum_{j=1}^{J} \eta^{2}\left(F, v_{. j}\right)$

Plan

(1) Données - objectifs
(2) Etude des individus
(3) Etude des modalités
(4) Aide à l'interprétation

Nuage des modalités

Inertie d'une modalité et d'une variable

$$
\begin{gathered}
\operatorname{Inertie}(k)=\frac{1-p_{k}}{J} \\
\operatorname{Inertie}(j)=\frac{1}{J} \sum_{k=1}^{K_{j}}\left(1-p_{k}\right)=\frac{K_{j}-1}{J}
\end{gathered}
$$

Variable	Nb de modalité	Inertie	nb dim. du sous-espace
sexe	2	$1 / J$	1
région	21	$20 / J$	20
département	96	$95 / J$	95

MAIS : l'inertie $\frac{K_{j}-1}{J}$ se répartit dans un ss-espace à $K_{j}-1 \mathrm{dim}$.

$$
\text { Inertie totale }=\sum_{j=1}^{J} \frac{K_{j}-1}{J}=\frac{K}{J}-1
$$

Ajustement du nuage des modalités

Recherche séquentielle des dimensions commme pour toute méthode d'analyse factorielle : un axe doit maximiser l'inertie et être orthogonal aux axes précédents

Activité non choisie - activité choisie

Projection des individus

Chaque individu au barycentre des modalités qu'il possède

Représentations barycentriques - représentation simultanée

 Représentation optimale des individus Représentation optimale des modalités Modalités au pseudo-barycentre : Individus au pseudo-barycentre :$$
G_{s}(k)=\frac{1}{\sqrt{\lambda_{s}}} \sum_{i=1}^{l} \frac{y_{i k}}{I_{k}} F_{s}(i) \quad F_{s}(i)=\frac{1}{\sqrt{\lambda_{s}}} \sum_{j=1}^{J} \frac{y_{i k}}{J} G_{s}(k)
$$

Plan

(1) Données - objectifs
(2) Etude des individus
(3) Etude des modalités
(4) Aide à l'interprétation

Inertie et pourcentage d'inertie en ACM

$$
\lambda_{s}=\frac{1}{J} \sum_{j=1}^{J} \eta^{2}\left(F_{s}, v_{. j}\right)
$$

$\Rightarrow \lambda_{s}$ est la moyenne des carrés des rapports de corrélation

- Individus vivent dans $\mathbb{R}^{K-J} \Rightarrow$ pourcentages d'inertie faibles
- Pourcentage maximum pour une dimension s :

$$
\begin{aligned}
\frac{\lambda_{s}}{\sum_{t=1}^{K-J} \lambda_{t}} \times 100 & \leq \frac{1}{\frac{K-J}{J}} \times 100 \\
& \leq \frac{J}{K-J} \times 100
\end{aligned}
$$

Avec $K=100, J=10: \lambda_{s} \leq 11.1 \%$

- Moyenne des valeurs propres non nulles : $\frac{1}{K-J} \times \sum_{t} \lambda_{t}=\frac{1}{K-J} \times\left(\frac{K}{J}-1\right)=\frac{1}{J}$ \Rightarrow interpréter les dimensions d'inertie supérieure à $1 / J$

Contribution et qualité de représentation

- Contribution et $\cos ^{2}$ pour les individus et les modalités
\Rightarrow Modalités extrêmes ne contribuent pas nécessairement beaucoup (cela dépend de leur fréquence)
$\Rightarrow \cos ^{2}$ petits ... ce qui est attendu car bcp de dimensions
- Contribution absolue d'une variable:

$$
\operatorname{CTR}(j)=\sum_{k=1}^{K_{j}} \operatorname{CTR}(k)=\frac{\eta^{2}\left(F_{s}, v_{. j}\right)}{J}
$$

- Contribution relative : $\operatorname{CTR}(j)=\frac{\eta^{2}\left(F_{s}, v_{j}\right)}{J \lambda_{s}}$

Représentation des modalités supplémentaires

Utilisation des relations de transition pour les éléments (individus, modalités) supplémentaires

Variable quantitative supplémentaire

\Rightarrow Comment faire avec les variables quantitatives ?

- Information supplémentaire : projetée sur les dimensions, coefficient de corrélation calculé avec chaque dimension
- Information active : découper la variable en classes

Description des dimensions

Par les variables qualitatives (test de Fisher), les modalités (test de Student) et les variables quantitatives (corrélation)

Variables quantitatives
correlation p.value

Nb.activités 0.97534590

Variables qualitatives
R2 p.value
$0.239 \quad 0.00 \mathrm{e}+00$
$0.275 \quad 0.00 \mathrm{e}+00$
$0.389 \quad 0.00 e+00$
$0.383 \quad 0.00 \mathrm{e}+00$
$0.399 \quad 0.00 \mathrm{e}+00$
$0.327 \quad 0.00 \mathrm{e}+00$
$0.287 \quad 0.00 \mathrm{e}+00$
$0.172 \quad 0.00 \mathrm{e}+00$
$0.355 \quad 0.00 \mathrm{e}+00$
$0.209 \quad 0.00 \mathrm{e}+00$
0.135 8.82e-267
$0.1259 .42 \mathrm{e}-247$
$0.1287 .20 e-245$
$0.1092 .25 e-212$

Modalités

> Estimate p.value

Jouer.musique_0 $0.268 \quad 0$
Voyage_0 0.270
0
Marche_0 $0.184 \quad 0$
Sport_0 0.2470
Ordinateur_0 0.263 0
Exposition_0 0.3040
Spectacle_0 $0.304 \quad 0$
Sport_N -0.247 0
Ordinateur_N -0.263 0
Exposition_N -0.304 0
Spectacle_N -0.304 0
Cinéma_N -0.283 0
Ecouter.musique_N -0.257
0
Lecture_N -0.231 0

Autre présentation de l'ACM : tableau de Burt

Tableau de Burt :

- Ensemble des liaisons entre variables prises 2 à 2 (tableau analogue à la matrice des corrélations entre variables quantitatives)
- Analyse des correspondances sur le tableau de Burt
- Résultats uniquement sur les modalités : même représentation mais avec des valeurs propres différentes
$\lambda_{s}^{\text {Burt }}=\left(\lambda_{s}^{T D C}\right)^{2}$
- $\lambda_{s}^{T D C}$ moyenne des carrés des rapports de corrélation

\Rightarrow L'ACM ne dépend que des liaisons entre les variables prises 2 à 2 (comme l'ACP ne dépend que de la matrice des corrélations)

Conclusion

- L'ACM est la méthode factorielle adaptée aux tableaux individus \times variables qualitatives
- Les valeurs propres s'interprètent comme des moyennes de rapports de corrélation au carré
- Le carré des liaisons est précieux en particulier lorsqu'il y a beaucoup de variables
- Revenir aux données en analysant des tableaux de contingence par AFC
- La convergence entre l'analyse du TDC et celle du tableau de Burt est un argument en faveur de l'intérêt de la méthode
- L'ACM comme pré-traitement d'une classification

Suppléments

Analyse de données avec R (2016), 2e édition. Husson, Lê, Pagès.
 Presses Universitaires de Rennes.

Package FactoMineR pour faire des ACP : http://factominer.free.fr/index_fr.html

Vidéos sur Youtube :

- une chaîne Youtube : youtube.com/HussonFrancois
- une playlist de vidéos en français
- une playlist de vidéos en anglais

